Supplementary MaterialsSupplemental data for this article can be accessed around the publisher’s website. was shown to suppress proliferation in an Ocln-dependent manner. Blockade of protein kinase C-zeta (PKC-) diminished transepithelial electrical resistance (TER) of HPAFII monolayers that was not corrected by dobutamine treatment while the loss of TER resulting from inhibition of ROCK1 could be partially recovered. Examination of normal and cancerous human pancreatic biopsies showed that this cellular localization of Ocln, c-Yes, YAP, and TEAD were similar to HPAFII for normal cells TC21 and AsPc1 for cancerous cells. Together, these results suggest a link between Hpo and signals emanating from cell-cell contacts involving Ocln that may regulate pancreatic cell proliferation through the coordination of planar cell polarity with apical-basal polarity events. binding partner of YAP (Aragona et?al., 2013), we examined whether Ocln could function as a potential sensor to regulate proliferation signals involved in apical-basal epithelial cell polarity. We tested this hypothesis using 2 human pancreatic cancer cells lines with different potentials to polarize to form polarized monolayers on permeable supports (Kim et?al., 1989). We first characterized the cellular distribution for proteins of interest in HPAFII cells produced at low cell density on plastic where nascent lateral cell-cell contacts had begun to be established. Immunofluorescence exhibited YAP was extensively EC1167 co-localized with c-Yes. This co-localization occurred primarily in the cytoplasm; some YAP, but very little c-Yes was observed in the nucleus (Fig.?1A1). Ocln/c-Yes co-localizations were observed primarily at cell-cell contacts but these appeared to occur to a lesser extent than c-Yes/YAP co-localizations and showed similarities to the Ocln/YAP distribution: mostly cytoplasmic co-localizations (Fig.?1A2). Co-localization of Ocln with YAP was less striking relative to Ocln/c-Yes and c-Yes/YAP interactions (Fig.?1A3). Further, c-Yes/YAP co-localizations appeared to EC1167 be primarily in the cytoplasm while Ocln/YAP co-localizations were observed more frequently at leading edge surfaces of these small cell colonies. TEAD/Ocln co-localizations were predominately in the cytoplasm of HPAFII cells, with limited interactions at the cell surface (Fig.?1A4). Higher magnification analysis showed TEAD/Ocln co-localizations to be incomplete in their overlap (Fig.?1A4), unlike the more complete overlay observed for c-Yes/YAP, c-Yes/Ocln and YAP/Ocln co-localizations (Fig.?1A1CA3). Open in a separate window Physique 1. Distribution and co-localization of c-Yes, Ocln, YAP, and TEAD in HPAFII cells 0.001. (D) Immunoblot analysis of TEAD in the nuclear fractions of HPAF II cells as a consequence of 10 or 20?M dobutamine exposure. Quantification of TEAD expression values are mean of 3 impartial experiments SEM; * 0.05. Dobutamine-induced redistribution of Ocln has functional consequences Dobutamine treatment of HPAFII cells produced at low cell densities resulted in a dose-dependent shift in Ocln immunofluorescence from the cytoplasm to the cell surface (Fig.?2). Concomitant with this shift in Ocln localization, there was an increase in co-localizations involving c-Yes and Ocln that was associated predominantly with EC1167 the membrane fraction of these cells (Fig.?3A, B). These results are interesting in light of previous findings showing that c-Yes is usually associated with Ocln at assembling TJ structures and is dissociated from Ocln at times when TJ structures are disassembling (Chen et?al., 2002b). Thus, suppression of YAP translocation to the nucleus by dobutamine treatment is usually associated with increased levels of c-Yes/Ocln co-localization in polarizing HPAFII cells. Open in a separate window Physique 3. Redistribution of Ocln and c-Yes in HPAFII cells and restriction of tricellulin to tri-cellular contacts following dobutamine treatment. (A) Confocal microscopy showing c-Yes and Ocln distribution in HPAFII cells. Cells were treated with 10 or 20 M dobutamine for 24?h period prior to c-Yes and Ocln cell distribution analysis. Scale bar, 20?m. (B) Immunoprecipitation of Ocln followed by an immunoblot analysis for c-Yes in nuclear, cytoplasmic, and membrane fractions of non-treated and 20?M dobutamine treated HPAFII cells. (C) Confocal images showing distribution of Ocln and tricellulin (Tric) in HPAFII cells treatment with 20?M dobutamine for 24?h. Scale bar, 20?m. (D) Immunoprecipitation of Ocln followed by an immunoblot analysis for Tric in nuclear, cytoplasmic, and membrane fractions of HPAFII cells following 20?M dobutamine exposure. 0.05. (I) Immunoblot for Ocln in HPAFII cells present in isolated fractions before and after treatment with dobutamine. (J) TER measurements in HPAFII confluent monolayers seeded.
Recent Posts
- Supplementary MaterialsSupplemental data for this article can be accessed around the publisher’s website
- Supplementary MaterialsSupplementary Info Supplementary Statistics, Supplementary Strategies and Supplementary References ncomms14060-s1
- miR\516a\3p continues to be reported to try out a suppressive function in several sorts of individual tumours
- Supplementary MaterialsBMB-51-412_Supple
- Supplementary Materials? CAM4-7-6158-s001
Archives
- March 2021
- February 2021
- January 2021
- December 2020
- November 2020
- October 2020
- September 2020
- August 2020
- July 2020
- December 2019
- November 2019
- September 2019
- August 2019
- July 2019
- June 2019
- May 2019
- November 2018
- October 2018
- September 2018
- August 2018
- July 2018
- February 2018
- January 2018
- November 2017
- September 2017
- August 2017
- July 2017
- June 2017
- May 2017
- April 2017
- March 2017
- February 2017
- January 2017
- December 2016
- November 2016
- October 2016
- September 2016
- August 2016
- July 2016
- June 2016
- May 2016
Categories
- 11-?? Hydroxylase
- 11??-Hydroxysteroid Dehydrogenase
- 14.3.3 Proteins
- 3
- 5-HT Receptors
- 5-HT Transporters
- 5-HT Uptake
- 5-ht5 Receptors
- 5-HT6 Receptors
- 5-HT7 Receptors
- 5-Hydroxytryptamine Receptors
- 5??-Reductase
- 7-TM Receptors
- 7-Transmembrane Receptors
- A1 Receptors
- A2A Receptors
- A2B Receptors
- A3 Receptors
- Abl Kinase
- ACAT
- ACE
- Acetylcholine ??4??2 Nicotinic Receptors
- Acetylcholine ??7 Nicotinic Receptors
- Acetylcholine Muscarinic Receptors
- Acetylcholine Nicotinic Receptors
- Acetylcholine Transporters
- Acetylcholinesterase
- AChE
- Acid sensing ion channel 3
- Actin
- Activator Protein-1
- Activin Receptor-like Kinase
- Acyl-CoA cholesterol acyltransferase
- acylsphingosine deacylase
- Acyltransferases
- Adenine Receptors
- Adenosine A1 Receptors
- Adenosine A2A Receptors
- Adenosine A2B Receptors
- Adenosine A3 Receptors
- Adenosine Deaminase
- Adenosine Kinase
- Adenosine Receptors
- Adenosine Transporters
- Adenosine Uptake
- Adenylyl Cyclase
- ADK
- Antivirals
- AP-1
- Apelin Receptor
- APJ Receptor
- Apoptosis
- Apoptosis Inducers
- Apoptosis, Other
- APP Secretase
- Aromatic L-Amino Acid Decarboxylase
- Aryl Hydrocarbon Receptors
- ASIC3
- AT Receptors, Non-Selective
- AT1 Receptors
- AT2 Receptors
- Ataxia Telangiectasia and Rad3 Related Kinase
- Ataxia Telangiectasia Mutated Kinase
- ATM and ATR Kinases
- ATPase
- ATPases/GTPases
- ATR Kinase
- Atrial Natriuretic Peptide Receptors
- Aurora Kinase
- Autophagy
- Autotaxin
- AXOR12 Receptor
- c-Abl
- c-Fos
- c-IAP
- c-Raf
- C3
- Ca2+ Binding Protein Modulators
- Ca2+ Channels
- Ca2+ Ionophore
- Ca2+ Signaling
- Ca2+ Signaling Agents, General
- Ca2+-ATPase
- Ca2+Sensitive Protease Modulators
- Caged Compounds
- Calcineurin
- Calcitonin and Related Receptors
- Calcium (CaV) Channels
- Calcium Binding Protein Modulators
- Calcium Channels
- Calcium Channels, Other
- Calcium Ionophore
- Calcium-Activated Potassium (KCa) Channels
- Calcium-ATPase
- Calcium-Sensing Receptor
- Calcium-Sensitive Protease Modulators
- CaV Channels
- Non-selective
- Other
- Other Subtypes
- Uncategorized